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A number of high-order methods are tested on a variety of dynamic problems in one, 
two, and three space dimensions. These problems include wave propagation phenomena as 
well as an asymptotic approach to a steady state. Both smooth and shocked flows are 
considered. The methods compared require only minor modifications of many existing 
second-order schemes. The results show that significant gains can be expected from the 
use of fourth-order methods. Spectral methods are also considered for some of the problems 
presented. 

I. INTRODUCTION 

Within the last few years a number of high-order methods have been proposed for 
for the numerical solution of hyperbolic equations. It will be demonstrated that the 
use of schemes with spatial accuracy of at least fourth order offers advantages both 
in computer speed and computer storage over standard first- and second-order 
methods. 

In this study we shall concentrate on schemes that are minor modifications of 
standard second-order methods. This requires that the higher-order methods be only 
second order in time. Hence, these methods are most suitable to stiff equations or to 
systems where the steady-state solution is of most significance. The results indicate 
that for many situations of physical significance there is less necessity for increased 
accuracy in time. The achievement of higher-order methods in time requires more 
work per time step and more involved algorithms. These methods are most appro- 
priate for problems with rapid temporal oscillations. The methods developed to date 
for these problems of high-order temporal accuracy are mainly based on Taylor series 
expansions or Runge-Kutta methods; see Burstein and Mirin [5], Rusanov [32], 
Abarbanel, Gottlieb, and Turkel [l], Turkel, Abarbanel, and Gottlieb [39], and 
Steppeler [34] for further details. 

* This report was prepared as a result of work performed under NASA Contract No. NASl- 
14101 at ICASE, NASA Langley Research Center, Hampton, Va. 23665. Also partial support was 
given by DOE Contract EY-76-C-02-3077 at New York University. 
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II. HIGH ORDER METHODS 

We will discuss the various schemes for one-dimensional problems. For leapfrog 
methods the extension to several dimensions is straightforward. With the other 
methods to be described the simplest extension to multidimensions is by either a 
splitting method or an alternating direction scheme. 

We consider the equation 

or in quasi-linear form 

Ut +“L = 0 (2. la) 

Ut + Au, = 0. (2.1 b) 

The simplest second-order method is given by leapfrog 

(2.2) 

This method is second order in space and time and is stable if A dt/dx < 1. Atj = 0 
we use a one-sided Euler method 

pi-1 - 
0 -- u 0 n - -g Cf," -&'">. (2.3) 

This has been shown to be stable for a scalar equation by Gustafsson et al. [16]. 
The extension to systems will be described later. A similar algorithm is used at j = N. 
These boundary algorithms are used to supplement the given boundary conditions. 

A fourth-order version of this method suggested by Kreiss and Oliger [23] is 

pI1 = &-l- 
3 J & W;:,, - f;"-J - (fj",, - fjg. (2.4) 

This method is fourth-order accurate in space and second order in time and is stable 
if A dt/dx < 0.72, the introduction of a larger domain of dependence introduces 
complications near the boundary. Oliger [27] suggests 

At q+1 = q1 - ___ 
3Ax 1 - ‘rl (f;‘.l + f;-‘) + ISf,” - 9fi” + 2&$ 

At 
(2.5) 

qi-1 = q-1 - __ 
3A.u [ 

-?fo?l - ; (f I’” + .f;“-‘> + 61;” - .f;] 

with a similar set at the right boundary. Due to the implicit nature of these equations 
they are less practical for nonlinear equations. One possibility is to linearize these 
equations (see Gary [lo]). Another alternative offered by Oliger [28] is to use a finer 
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mesh near the boundary with a dissipative method used in the finer mesh. Due to these 
complications this method was not used in the comparison runs. For equations on 
the globe, where boundaries do not appear, this method may be useful. Kreiss and 
Oliger [24] as well as Williamson and Browning [40] and Kalnay-Rivas et al. [19] 
present comparisons for this case. 

The leapfrog methods are all nondissipative. In many problems involving large 
gradients one wishes to use a scheme that is inherently dissipative. A second-order 
method with this property is the Lax-Wendroff scheme. A two-step implementation 
of this suggested by MacCormack [25] is 

up’ = Ujn - ot 3 Ax (L+1-0, ,j = O,..., N - 1 

(2.6) 
p+l = - 

1 ; [ujn + uy - g (fi” - fpl) 1 ) j=l N. ,...y 
Another variant uses backward differences on the first step and forward differences 
in the corrector. Both variants are second order in space and time and are stable 
when (dt/dx)A < 1. At the boundaries we use 

N " - g (fN" - f;lr-1) (2.7a) 

and 
1 un+1 = - 

0 2 [ 
uon + up - g (f:” - ff’)]. (2.7b) 

A method which is identical to (2.7) is to extrapolate beyond the boundaries for the 
fluxes, that is, let 

fE+1 = 2fNn - f k-1 7 (2.7~) 

t’j;) = 2f3 +p (2.7d) 

and then use (2.6). On serial machines the choice between (2.7a) and (2.7b) and (2.7~) 
and (2.7d) is determined by programming convenience. The problem on acoustics 
discussed later was run on the CDC-STAR. In this case the boundary equations are 
performed over the entire grid in order to use vector operations. The use of (2.7~) and 
(2.7d) is then considerably more efficient. 

A fourth extension of (2.6) is given by Gottlieb and Turkel [12] 

uy = Ujn + $ (7fi” - 8f ;+I+ f ;+J, j == 0 ,..., N - 2 

I 
(2.8a) 

.;+1 = - 
2 [ 

Uin + uy - & (7f I” - 8f JYl + f i!J], .j == 2 ,..., N. 

581/35/3-3 
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As before there exists another variant 

u!” = Ujn 3 - & (74” - 8f,“_, + f;-2)) j = 2,..., N 
(2.8b) 

u?+l = ; 3 [ Uj” + uy + & (7fjl) - 8fiy1 + fjy2)], j = 0 ,..., N - 2. 

In order to have fourth-order accuracy for nonlinear problems it is necessary to use 
(2.8a) and (2.8b) at alternate time steps. The extension to several dimensions will be 
discussed in Section 3. 

The predictor in (2.8a) cannot be used at j = N - I, N. At these points we sub- 
stitute 

uu) 
N-l = uiLl - g (4fN” - f$-, - 4~;.., + f&h 

(2.9a) 
&) = 

N UN n - & (15f,‘” - 28f;-, + 17& - 4&). 

Similar for the corrector we substitute 

1 
g+l = - 

0 2 [ uon + 24x” - g& (4fy) - 17f;’ + 28fF’ - 15f;)) 1 , 
(2.9b) 

1 
p-t1 = - 

1 2 [ (-fp’ + .p, + f:” - 4f:‘))]. 

Similar formulas can be used with the variant (2.8b). As before these formulas are 
equivalent to extrapolating the fluxes. This method is stable if (dt/dx)(af/au) < Q. 

For many stiff problems an implicit method has been tried. In this case the accuracy 
determines the time step as a function of the dominant speeds of propagation. 
Unconditional stability guarantees that the less important fast waves will not give rise 
to instabilities though they are not to be accurately computed. An important point 
is to make sure that these fast waves do not grow in amplitude and destroy the 
accuracy of the scheme. A standard implicit method for solving (2.1) is the Crank- 
Nicolson method 

(2.10) 

For linear equations this involves the inversion of a block tridiagonal matrix. For 
nonlinear problems this can be solved either by iteration or else by a linearization 
expansion (see Lindemuth and Killeen [24], Beam and Warming [3], and Briley and 
McDonald [4]). 

A fourth-order version of (2.10) was suggested by Collatz [7] and later by Jones 
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et al. [18] and by Kreiss (see [30]). It can also be derived from linear finite elements 
(see [31, 371). To solve (2.1) we use 

(2.11) 

This system again is solved by a block tridiagonal inversion and so does not take 
much more time than (2.10). For nonlinear problems both iteration and linearization 
techniques can be used as before (see [3,41]). Use of Galerkin procedures indicates 
that the boundaries should be treated by 

1 6 u,n+1 + ; uy+1 + &(f;+l- f,““) = ; u; + ; uln - & (f,” - f,“) 

and (2.12) 

However, this is only first order at the boundary. An alternative is to use the box 
scheme as suggested by Skiillermo [33], 

At u;+l + ul”” 3 z (f;“” - f,““) = 

and (2.13) 

This boundary treatment is now second order in space and time and preserves the 
tridiagonal nature of the matrix. According to [17] it would be preferable to use a 
third-order approximation at the boundary. However, this would destroy the tri- 
diagonal structure of the matrix. The results shown later demonstrate that in many 
problems (2.13) is sufficient. This method can be extended to mixed hyperbolic- 
parabolic problems by use of operator compact implicit methods (see Ciment et al. [6]). 
For applications to boundary layer flow, see [21,42]. 

The use of Pad6 approximations can also be used for high-order compact explicit 
schemes, as is discussed in the Appendix. 

As an alternative to these fourth-order methods spectral methods are also con- 
sidered. With the use of a modified Euler time integration these methods are second 
order in time and “infinite” order in space. When the space domain is periodic a 
Fourier collocation method is appropriate. As a second-order Runge-Kutta is un- 
stable when used with the Fourier method, the modification of [13] can be used to 
solve (2.1) on 0 < x f 2rr. 
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fk _ : ~eniiklN, j=O ,..., 2N - 1, 
j=-N 

then define z = iak dt and choose 01 3 1 .$(A), A = 2f j2u. 

(de):’ = 5 & (7 - 8e-2 + e-2z)fk&jklN. 
k--N 

(2.14a) 

(2.14b) 

We then integrate (2.1) by 

rlj = lIjn - (Atfjp 

and (2.15) 
$tl 

3 = #.lj" f Uj" - (AI‘g)]. 

This method is now unconditionally stable and second order in time and “infinite” 
order in space. 

For problems with boundaries, Fourier expansions are inappropriate as a Gibbs 
phenomena will occur at the boundaries. Instead one can expand in a Chebyshev 
series (see [ 11 I). 

Let 

then 

.fi = i %7-k(X), (2.16) 
I<=0 

WJ, = 2 bkTkG-4 (2.17) 
k=O 

with 

c,, = CN 

Then we integrate (2.1) by 

bk = L 5 la, At. 
ck l=k+l 

l+k odd 

2; cj = 1 j = I,..., N - 1. 

(2.18) 

(2.19) 

Uy+l ZzY Ujti - (Atf;+1’2)z . 
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This method is stable if A dt < 8/N2 (see [ll]). To improve the stability criterion 
one can replace (2.18) by 

z = e-2aAtl 9 b, -$ ?2[11 - 18z+9z2-2z3]. 

Computationally this modification seems to be unconditionally stable (see [13]). 
For systems of equations one has to modify the boundary treatment to take into 

account the characteristic variables (see [14]). This is discussed in more detail in the 
following sections. 

III. ONE-DIMENSIONAL PROBLEMS 

As the first problem, we consider wave propagation in a bounded domain. In 
particular we solve the system 

Ut + NC, + c,) % + (c, - c,) v*] = 0, 
O<x<l. 

0, + NC, - cm> Kc i cc, + 4 %I = 0, 

A solution of (3.1) is 

u(x, t) = F(x + c$) + G(x - c,t), 

u(x, t) = F(x + cnt) - G(x - CJ). 

To ensure that (3.2) is the unique solution to (3.1) we add initial conditions 

4x, 0) = F(x) + G(x), 

u(x, 0) = F(x) - G(x), 

and boundary conditions 

~(0, t) = F(-cpt) + G(-cc,t), 

~(1, t) = F(1 - cl)t) + G(1 - c,t). 

(3.1) 

(3.2) 

(3.3a) 

(3.3b) 

Thus, both boundary conditions are imposed on U. This is a well-posed problem 
whenever c, and c, have opposite signs. We shall always assume c, < 0 < c, . 

The boundary algorithms discussed in the previous section are necessarily stable 
only for a scalar equation. For systems we must account for the characteristic variables 
(see [14]). For (3.1) we have 

(u + u)t + c,(u + u), = 0, 

(u - 4 + c,(u - u), = 0, 
O<x<l. (3.4) 
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where c, < 0 < c, . At x = 0 we wish to use the given algorithm on the quantity 
u - v which is propagating toward the boundary. We denote by uoc - vgc the value 
of u - L’ calculated by one of the boundary algorithms of the previous section. 
We then calculate the boundary values by 

UO 11 -= u(0, t) = F(-c,t) + G(-CJ), 

van = voe + (uon - uoC), 

and similarly 

2.Q = ~(1, t) = F(l - c,J) + G(I - cnt), 

C’g = c’NC + (u$ - ZlpJn). 

(3Sa) 

(3Sb) 

This correction was used for many of the results in this section. For some of the 
methods the scheme was unstable without the use of the correction, while for others 
the correction was not necessary. For these latter cases the corrections to v did not 
significantly change the accuracy of the method. 

This problem was solved by all the methods discussed in Section 2. The effectiveness 
of the methods is calculated by comparing the mesh sizes and computer times required 
to achieve a given error. We define the normalized L, error as 

ERR = 
I 

x [Uj’l - u(x, t)]’ + [zy - v(x, t)]” 1/z 

c (Uj”>” + (vj”)” 1 (3.6) 

The error requirement was that ERR be about 5 % at t = 5.0. That is, the normalized 
L, error should be 0.05 at a time corresponding to the transition of five waves with a 
wavelength of one. 

To simulate the range of problems that occur naturally we have chosen three sets 
of problems. The first is 

C,, = 30, c,, z-7 - 1, 

F(x) =: 0.01 sin 27rs, G(x) == cos 27rx; 

the second is 

Cl1 = 10, c,,, = - 1 ; (3.8) 

while the third is 

c,, = 1, cm = --I, 

F(x) = sin 2i7.Y. G(x) = cos 27~~. 
(3.9) 

These problems correspond to the various degrees of stiffness found in many physical 
situations. 
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TABLE I 

System (3.1)-(3.2) with c, = 30, c,,, = -1, 
F(x) = 0.01 sin 2~rx, G(x) = cos 2nx; Periodicity not Used 

Method Order N &/30dx Lz error (t = 5) CPCrtime 

Two step (2.6) 2 75 0.90 0.0490 344.5 

Two step (2.8) 4 20 0.65 0.0278 49.2 

Implicit (2.10) 2 81 25.00 0.0513 10.9 

Implicit (2.11) 4 44 25.00 0.0478 4.7 

Implicit (2.11) 4 21 9.00 0.0495 2.8 

Chebyshev (2.16) cc, 9 0.50 0.0026 5.6 

In Table I we present the results for (3.7) where the fast speed is 30 times larger 
than the significant speed. The computer times are for the CDC 6600 at New York 
University. To achieve 5 % accuracy the fourth-order extension of the MacCormack 
method ((2.S(2.9)) requires about one-seventh of the time required by the second- 
order method and about one-quarter of the storage. As expected the Crank-Nicolson 
is most effective when using larger time steps. The fourth-order implicit is about four 
times faster and requires about one-quarter the storage. It is interesting to note that 
the fourth-order implicit is most effective with smaller time steps than that used with 
the Crank-Nicolson method. For large time steps the temporal errors dominates the 
spatial accuracy and the fourth-order accuracy in space is not being utilized. We wish 
to choose time steps so that the spatial and temporal errors are about equal. For this 
problem the Chebyshev method was more efficient than the fourth-order explicit 
method. Hence, the spectral expansions should be seriously considered for many 
applications even in bounded domains. The timings for the Chebyshev method depend 

TABLE II 

System (3.1)-(3.2) with c, = 10, c,, = -1, 
F(x) = 0.01 sin 2xx G(x) = cos 277x; Periodicity not Used 

Method Order N &/104x L, error (t = 5) CPU time 

Two step (2.6) 2 66 0.90 0.0489 64.2 

Two step (2.8) 4 15 0.65 0.0475 7.8 

Implicit (2.10) 2 81 9.00 0.0468 9.4 

Implicit (2.11) 4 41 9.00 0.0507 3.4 

Implicit (2.11) 4 13 0.90 0.0383 3.0 

Chebyshev (2.16) 02 9 0.50 0.0022 1.9 
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heavily on the fast Fourier transform that is used. In Table II the results are presented 
for (3.8) where the fast speed is 10 times faster than the speed of interest. The results 
are similar to that in Table I. If the total number of points N in each direction is 
not large, then one can calculate the Fourier series directly without using fast transform 
methods. The point at which the FFT is significantly faster is machine dependent. 
All runs in this paper used the FFT for uniformity. 

In Table 111 we present the results for the wave equation where all speeds are of 
interest. The fourth-order Lax-Wendroff method is still about twice as fast as the 
second-order version and requires less than one-third the storage. This gain is 
achieved by choosing a coarse mesh and a time step below that allowed by stability 
considerations. Choosing a small time step reduces the errors in time and only 
increases the work linearly. Since the spatial errors are kept small by the fourth-order 
method, we still gain in efficiency. Similarly the fourth-order implicit is more efficient 
than the second-order implicit when the fourth-order method is coupled with a small 
time step. Because of the necessity of reduced time steps the gains in efficiency are 
not as great as they were for the problems with different time scales. 

TABLE III 

System (3.1H3.2) with c,, = 1, cm = -1; Periodicity not Used. 

Method Order N At/Ax L2 error (t = 5) CPU time 

Two step (2.6) 
Two step (2.8) 
Two step (2.8) 
Implicit (2.10) 
Implicit (2.11) 
Implicit (2. I 1) 
Chebyshev (2.16) 

Two Step (2.6) 
Two Step (2.8) 
Two Step (2.6) 
Two Step (2.8) 
Two Step (2.6) 
Two Step (2.8) 
Two Step (2.6) 
Two Step (2.8) 

F(x) = sin 277x, G(x) = cos 277.x 

2 37 0.90 
4 41 0.65 

4 12 0.25 

2 67 0.90 

4 41 0.90 

4 9 0.25 

22 9 0.20 

F(x) = sin 8~4 G(x) = cos 8ax 

68 0.90 

31 0.30 

80 0.90 

33 0.30 

99 0.90 
37 0.30 

144 0.90 
43 0.30 

0.0497 2.58 

0.0489 5.39 

0.0525 1.26 

0.0481 6.41 

0.0536 3.38 

0.0447 0.61 

0.0414 0.49 

0.1955 

0.1851 

0.1479 

0.1384 

5.33 

5.07 

7.13 

5.68 

10.69 

7.07 

21.582 

10.860 

0.0998 

0.0953 

0.0491 

0.0483 
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In Table 111 we also consider the wave equation but now with four wavelengths 
within the domain of integration. We compare the efficiency of the second-order and 
fourth-order two-step methods for a variety of error levels. Choosing the time step 
for the fourth-order method as dt = 0.3dx, then even at the 20 % error level the 
fourth-order method requires less computer time and reduces the storage requirements 
in half compared with the second-order method. If one does not fine tune the time 
step for the fourth-order method, then it is less efficient, computer-time-wise, at the 
20% level than (2.6). However, for Courant numbers between 0.15 and 0.40, the 
fourth-order method is already more efficient at the 15 % error level. At the 5 % error 
level and a Courant number of 0.30 the error is dominated by the time discretization. 
Hence, for this error level a Courant number of 0.25 was chosen, for the fourth-order 
method (2.8), to reduce the temporal error. 

Thus, we have shown that for the wave equation fourth-order methods are 
competitive even at error levels in the range of 15 to 20 ‘A. Though the reduction in 
computer running time is not significant at this error level, the storage requirements 
are halved. For stiff problems where higher-order methods are more appropriate the 
fourth-order methods are more efficient even at the 20 % error level. 

The purpose of the tests is to demonstrate the usefulness of higher-order modifi- 
cations to existing codes. This table also indicates the advantage of implicit methods. 
However, the computer time required for an implicit method increases cubically 
with the number of equations to be solved. Hence, for realistic problems the com- 
parison of explicit and implicit methods has to be done on an indivudial basis. 
Similar remarks apply to the spectral method. 

For the second one-dimensional problem we consider flow in a Lava1 nozzle. In 
contrast to the previous case the equations are nonlinear and the question of impor- 
tance is the steady-state solution. Let A(x) be the area of the nozzle at position x. 
Then the equations of motion are 

64, + (PA&c = 0, 
(&4t + Mpu2 i PK! = 479, (3.10) 
W), + [ME + PL = 0, 

where p = (y - l)(E - $9) and y = 1.4. At the inlet the flow is subsonic and we 
specify E and p as the known steady solution. The outlet condition depends on the 
solution desired. For a smooth solution the flow is supersonic and no boundary 
conditions are specified. For a shocked solution the pressure is specified at the outlet 
(see [8]). If A’(x) is given by a second difference, then the accuracy of the higher-order 
methods deteriorate and hence ,4’(x) was calculated analytically. In other cases where 
A(x) is given by data points it is recommended that A’(x) be calculated by differen- 
tiating a cubic spline interpolation. Similar situations arise in flows over airfoils 
when the radius of curvature is required. For the examples given below A(x) was 
chosen as a hyperbolic cosine. 

For smooth profiles it was found that the major difficulty occurred at the throat 
where the flow is sonic. When an artificial viscosity is not added, many of the methods 



330 ELI TURKEL 

TABLE IV 

Smooth Solution to System (3.10) 

Method 
-._ 
MacCormack 
Richtmyer 
Brailaskaya 
Two step (2.8) 
Brailaskaya 
Fully implicit 
Fully impiicit 
Crank-Nicolson 
Crank-Nicolson 
Fully implicit 
Fully implicit 
Crank-Nicolson 
MacCormack 
Two step 

Order N 

2 
2 
2 
4 
4 
2 
2 
2 
2 
4 
4 
4 
2 
4 

41 
41 
41 
21 
21 
35 
35 
41 
41 
33 
29 
31 

171 
39 

CFL 

0.90 
0.90 
0.90 
0.60 
0.60 
0.90 

3.0 
0.9 
2.0 
0.90 
3.00 
0.90 
0.90 
0.60 

Viscosity 
factor 

0 
0 
0.35 
0 
0.50 
0.30 
0.30 
0.40 
0.40 
0.30 
0.30 
0.70 
0. 
0. 

L, Error 
steady state 

-__ __ 
1.93 x 10-a 
1.27 x lO-3 
1.12 % 10-a 
8.15 x lo-” 
1.93 x IO-3 
1.10 x 10-a 
1.10 x 10-s 
1.00 % 10-s 
1.02 x IO-3 
9.90 x 10-d 
1.40 x 10-Z 
1.22 x 10-a 
1.01 x 10-4 
1.09 x 10-J 

CPU time 

4.70 
4.28 
4.55 
2.02 
2.32 
9.75 
3.01 

13.09 
6.52 
7.73 
2.20 
7.40 

111.51 
6.79 

gave rise to an expansion shock. The solution is considered converged if p changes by 
less than E = 1O-5 in one time step. For finer grids a smaller E was used. 

In Table IV we consider the results for a smooth profile. The second-order methods 
that we considered are the MacCormack method, the Brailaskaya-Matsuno scheme, 
and implicit methods with both centered and backward time differencing. The two- 
step Richtmyer method gave results very close to those of the two-step MacCormack 
method. The second- and fourth-order MacCormack methods required no artificial 
viscosities. The Brailaskaya and the implicit schemes required the addition of an 
artificial viscosity to avoid difficulties at the throat. For the implicit methods the 
artificial viscosity was added explicitly at time t. For this problem the fourth-order 
explicit methods are more than twice as efficient as the corresponding second-order 
method. They also required less than half the storage to achieve three significant digits 
in steady state. For four-digit accuracy the efficiency factor of the fourth-order method 
increases to 16. These results are all based on an odd number of mesh points so that 
the throat is located at a mesh point. Using an even number of mesh points the error 
again decayed monotonically but was considerably worse than the solution based 
on an odd number of points. This probably depends on whether or not mesh point 
is located at the throat. 

For implicit methods the accuracy and stability depends strongly on the boundary 
treatment. In [14] it is proved that one does not need to include the given boundary 
conditions in the implicit method. Instead, after each time step one can correct the 
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boundary conditions. For (3.10) it was found that this worked only for time step less 
than three times the Courant limit. It is interesting to note that for larger time steps 
the nonlinear instabilities manifested themselves as negative pressures near the sonic 
point. It would have been difficult to trace these negative pressures to an improper 
boundary treatment. When the given boundary conditions were incorporated in the 
matrix to be inverted and a box scheme was used for the correct characteristic 
variables, then time steps greater than 15 times the Courant limit could be used. 

For the implicit methods the higher-order methods are only about 30% more 
efficient. We speculate that in going to a steady state the use of the lower-order box 
scheme at the boundary causes a deterioration in the accuracy. An alternative for 
steady-state problems is to solve for ZP 1-l - P’. Then only the explicit right-hand side 
of the equation need be of higher order since the implicit part converges to zero at the 
steady state. Hence, one can use a backward implicit method for the implicit part, 
while the derivatives on the right-hand side are approximated by fourth-order 
differences or else by a Chebyshev expansion. 

We next consider (3.10) with a shocked solution profile. The solution for the 
fourth-order method is not a monotone function of the mesh at least through 
N = 201. The second-order method becomes monotone for N > 85. Hence, it is not 
meaningful to determine which method is most efficient to achieve a given error 
tolerance. Instead we find the asymptotic order of accuracy. For a particular linear 
problem Majda et al. [26] have shown that for discontinuous solutions one cannot 
achieve better than second-order accuracy. Even that is possible only if the dis- 
continuity is treated in a special way. 

For the nonlinear problem with the shock the equations were solved with a series 
of meshes. For the second-order method this ranged between 51 and 151, while for 
the fourth-order method, it ranged between 101 and 201. In both cases only an odd 
number of points were used. The initial conditions were chosen as smooth functions. 
We then fit a straight line, using a least-squares estimate, for the error as a function 
of the mesh width on a log-log scale. We calculate both L, and L, errors over the 
following domains. D, is the entire region; the error in D, is dominated by the shock, 
D, contains the entire region excluding a fixed distance about the shock. It was found 
that if a fixed number of points were excluded rather than a physical distance, then 
no meaningful results were found. D, is the domain downstream of the shock. In this 
region two characteristic curves out of three enter the domain from the shock as t 
increases. Hence, we examine if errors propagate from the shock into D, . The 
results are presented in Table V. 

Near the shock the L, error behaves as (dx)lj2 independent of the scheme while 
the L, error is linear in dx. Downstream of the shock, in D, , both the L, and L, 
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TABLE V 

Shocked Solution to System (3.10) 

Method L,(DJ L@d MD,) MD,) L,(DJ L(4) 
- 

Second order 0.48 0.97 2.15 2.10 2.59 2.60 
Fourth order 0.52 1.01 2.88 3.95 5.68 5.40 

Q All rates of convergence are least square estimates based on an odd number of mesh points. The 
definitions of the domains Dk are given in the text. 

that the oscillations in the vicinity of the shock are much larger upstream than 
downstream. However, it is mainly errors at the sonic point that reduce the rate of 
convergence. If we use only the calculations using points between 151 and 201, then 
the estimate of the rate of convergence increases to 3.7. 

In [12] are presented graphs for the Riemann problem that show that the overshoots 
and oscillations about a shock are not aggravated by fourth-order methods. Similar 
results have been obtained with a Chebyshev collocation method. This is even more 
true when small time steps are used and the amplitude of the oscillations grows with 
a second-order two-step method. 

IV. MULTIDIMENSIONAL PROBLEMS 

In this section we consider the explicit methods for two-dimensional problems. 
The methods described in Section II are extended to multidimensions by use of the 
splitting methods [35, 361. Writing the general equation as 

we denote the solution to 

wt $ .L + g, f h, = F, (4.1) 

wt+.Lr =Fl (4.2) 

by zP1 = L,zP. Here F = Fl + F, + F3 with the division of F into three parts 
arbitrary from the mathematical side. Usually the physics of the situation will dictate 
the splitting of the inhomogeneous terms. We then solve (4.1) by 

(4.3) 

This splitting preserves the second-order accuracy in time and does not disturb the 
spatial accuracy of the schemes. The stability condition is simply the intersection of 
the one-dimensional stability conditions. 
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We first consider two systems with constant coefficients and one periodic direction. 
A more difficult problem is then presented. We first consider the linear equations of 
elasticity for 0 ,< x < 1, 0 < y < 1, 0 < t < 1. In the x direction the solution is 
periodic, while at y = 0 and y = 1 the shear and normal stresses are zero. In the 
interior we have 

put = Tll,Z + Tl?,Y f 

put = T12.e + T22,Y 3 

'T11,t = (2/J + 4 Kz + b4 3 (4.4) 
712,t = PG4/ + uz,), 

'-at = h, + (211 + 4 u, 

with p, h, and p as constant. The solution considered is presented in detail in [38]. 
This problem was solved with the second-order MacCormack method (2.6). With a 
mesh of dx = dy = l/32 the phase error of the computational solution is 0.023. 
The difference between the analytic and numerical solutions in the L, norm is 0.0964. 
Using the fourth-order two-step method (2.8) with a mesh of dx = dy = l/16 the 
phase error is 0.0079 while the L2 error is 0.106. Thus, with half the mesh points in 
each direction the fourth-order method gives similar L, errors and considerably 
smaller phase errors. With smaller error tolerances the efficiency of the fourth-order 
code improves dramatically. 

The next case we consider are the magnetohydrodynamic equations linearized about 
an equilibrium solution u” = v” = NO = B,O = 0, pa, pa, Bra, Bzo constant. The 
resulting equations are 

at4 ap Poz+~+Bzoax = a& 0 9 

/,O $ _ B,'J !j$ + f$ + B,"% + B,O T = 0, 

pO $ - B,O 2 = 0, 

as, 
at 

-BO%V=() 
“ax 3 

(4.5) 
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TABLE VI 

Results for the Linearized Two-Dimensional MHD Equations 

Method Mesh L, error 
Phase 
error 

CPU 
time 

x direction 
Second order 
Fourth order 
Fourier 

y direction 
Second order 
Fourth order 
Fourth order 

32 x 32 0.034 0.0025 160 
16 x 16 0.03 1 -0.0022 50 
8 x 16 0.034 -0.0024 141” 

62” 

o Using FORTRAN FFT. 
b Using assembly language FIT. 

In the x direction the solution is periodic, while in the y direction we impose the 
boundary condition B, = 0. We impose only one boundary condition since the 
boundaries y = 0 and y = 1 are characteristic boundaries. In Table VI we present 
the results for this case where we again compute the phase error and the difference 
between the numerical and analytical solutions measured in the L, norm. In the y 
direction both second-order and fourth-order methods were used. In the x direction 
these methods as well as the Fourier collocation method ((2.14) and (2.15)) were used. 
Details are given in Table VI. As before, the fourth-order method with half the 
number of points per direction gave errors similar to the second-order method on the 
finer mesh. So at error levels of about 3 % the fourth-order method was more than 
three times more efficient. As before, the fourth-order method is even more efficient 
at lower error levels. The use of the stabilized Fourier method again allowed a halving 
of the variables without affecting the accuracy. The timing for the Fourier program 
is based on an assembly language fast Fourier transform and using the fact that 
we deal only with real data. Slightly faster times were achieved by using a FORTRAN 
FFT for the specific N involved. A highly optimized general FORTRAN FFT more 
than doubled the total computer time. In conclusion the Fourier method allowed a 
reduction in storage but did not give any increase in speed over the fourth-order 
method to achieve the same accuracy. This conclusion is strongly machine dependent. 
When the analytic solution contains small wavelengths the Fourier method may 
become more efficient. Also, in this case the total accuracy of the problem is determined 
by the boundaries. In problems which are periodic in all directions the Fourier 
method is probably the most efficient (see e.g., [9, 291). Further discussion of this code 
for the three-dimensional nonlinear MHD equations is presented in [15]. 

As a final application we consider the Euler equations in axisymmetric coordinates 
linearized about an arbitrary mean flow us(z, r), t+,(z, r). These equations are used in 
acoustic studies. 
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The equations are 

(4.6) 

F(r, z, t) is a forcing term which is meant to simulate the source of sound in a jet. 
The domain of integration is r > 0, co -C z < co, t > 0 and the main interest is the 
solution in the far field. Hence, it is necessary to reduce the storage via high-order 
methods to keep the problem manageable. This problem was solved for various u,, , 
v,, , F using the two-step methods ((2.6) and (2.8)) and splitting in a series of one- 
dimensional problems as described earlier. To simulate the infinite domain of 
integration radiation boundary conditions were imposed based on asymptotics of 
the wave equation. Since F simulates a point explosion at the origin a stretched 
coordinate system is used. For realistic mean flows this stretching is also needed to 
resolve gradients in the mean flow. Because of this stretching, the time step is deter- 
mined by points near the axis of symmetry. Thus, we are able to choose time steps 
near the stability limit without affecting the overall accuracy. More details are 
presented in [2]. 

For the first case we consider zero mean flow u0 = z+, = 0 and so the analytic 
solution (with F a delta function) is known. We compare the two methods for a time 
of 70 units, approximately 400 time steps, using the second-order method. The 
computer times are for the STAR-100 at NASA Langley. Again, the fourth-order 
method with half the grid points per dimension has greater accuracy than the second- 
order method with the fine mesh. The efficiency gain is between 3 and 4 at large error 
tolerances and increases at lower error tolerances. 

TABLE VII 

Results for Acoustic Equations (4.6) with Realistic Meanflow” 

Angle to Fourth order Fourth order Second order Second order 
axis N = 8800 N = 12000 N=8800 N=16000 

0 107 119 38 91 
6.7 370 409 129 298 

13. 790 847 299 702 
19.1 1180 1255 500 1017 
25.7 1614 1730 821 1474 
32.4 2160 2205 1706 2091 
38.4 2538 2611 2674 2619 

a The pressure is calculated for a range of angles from the axis at 60 jet diameters. N is the total 
number of mesh points in the z - r plane. Fourth order, N = 12000 is closest to analytic solution. 
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In the second case we consider a realistic mean flow modeled after experiments, 
and a harmonic source at two diameters downstream of the nozzle. The Mach 
number at the jet exit is 0.8, while the source oscillates with an intermediate frequency. 
In Table VII we present the peak acoustic pressure at 60 jet diameters, for a range of 
angles above the axis of symmetry. Varying the mesh and boundaries shows that the 
fourth-order method with 12000 points yields essentially the analytic result. Using 
this as a standard we see that the fourth-order method with 8800 points gives much 
better accuracy than the second-order method with 16000 points. For pulse sources 
it was not possible to use the second-order method and achieve reasonable accuracy 
due to storage limitations. 

V. CONCLUSION 

We have compared second- and fourth-order methods using both explicit and 
implicit codes, in both one and two space dimensions. In general the fourth-order 
methods were about three to five times faster in order to give the same accuracy at 
about the 5 “/, level. The savings in storage is a factor of 2 per space dimension. 
For three-dimensional problems or smaller error tolerances the fourth-order methods 
are even more efficient. 

Given most second-order methods in space and time it is straightforward to 
increase the space accuracy to fourth order. In the author’s experience it has taken less 
than one day of coding to change large scale programs. The boundaries do not 
usually create difficulties, especially if characteristic corrections are used as given by 
(3.5) and described in [14]. In some cases where the boundary treatment is extra 
sensitive the fourth-order method may be less stable than the corresponding second- 
order method. The fourth-order scheme is most efficient for problems involving 
several time scales where the fastest time scale is of less physical significance. When 
stretched meshes are used, the efficiency also increases. In this case the time steps are 
determined by a small portion of the domain of interest. So for most of the region, the 
computational time step is small compared to the local speed of propagation. Hence, 
time errors are small and the spatial accuracy is the dominant factor. 

These methods were also tried on a one-dimensional nozzle problem which was 
marched to a steady state. The analytic solution at the steady state contains a shock. 
As a function of different meshes a least-squares estimate of the rate of convergence 
was computed. Over the full mesh the error decreased as (d~)l/~ and dx using the L, 
and L, norms, respectively. Excluding the shock region the error decreased as (d~)~ 
where n is the order of the scheme. Furthermore, the overshoots at the shock were not 
accentuated by the fourth-order method. Hence, the fourth-order method is efficient 
even for problems containing shocks. 

Several cases were also considered using spectral methods. Here, the timings 
depended crucially on the fast Fourier transform that was used. For a one-dimensional 
generalized wave equation the Chebyshev collocation method was used. The efficiency 
of this method was even better than the fourth-order two-step method. Applications 
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to other more complicated situations is being pursued. We also used a Fourier 
collocation method for the periodic direction in a linearized two-dimensional MHD 
system. The Fourier method allowed a reduction in the storage requirements but did 
not decrease the computer time to achieve the given accuracy. 

The second order in time and fourth order in space extension of MacCormack’s 
method is presently being used in several large scale programs. These include modeling 
of noise in realistic jets, three-dimensional nonlinear MHD properties, as well as the 
full Navier-Stokes equations. These codes are running on the CDC-6600, Cyber 175, 
STAR-100, and CRAY computers. Hence, the method has been tested for efficiency 
and reliability under a variety of problems. The domains have included periodic 
regions, bounded regions with both noncharacteristic and characteristic boundaries, 
as well as unbounded regions which require the use of radiation boundary conditions. 
Hence, the robustness of the method under boundary conditions is also demonstrated. 

It is important to choose the time step for the 2-4 method (2.8) so that the temporal 
errors are not larger than the spatial errors. For the wave equation it was found that a 
Courant number of 0.30 was efficient at error tolerances of about 20 %. At the 5 % 
error level Courant numbers of 0.25 or less were required for efficiency. Choosing 
too large a time step severely degraded the solution. In general it was better to choose 
too small a time step than too large a time step. For the acoustic equations (4.6) a 
coordinate stretching was used, and so the time step was determined by only a small 
region. In this case we even exceeded the formal stability limit without affecting the 
stability or accuracy of the numerical solution. Hence, for many problems of practical 
significance (i.e., they are stiff or else the time step is determined by a small region 
of mesh points) the time step can be chosen near the stability limit without any 
deterioration in the accuracy of the solution. 

Higher-order methods may not always be advantageous or feasible. Higher-order 
methods usually require more computer time per time step than lower-order methods. 
Hence, efficiency is increased only if a coarser mesh can be used. There are various 
circumstances where the mesh is constrained by considerations other than accuracy 
and hence little is achieved by higher-order methods. One case is when the geometry 
of the problem demands a large number of points. For example, if one wishes to 
describe the many perturbations on a real wing, then one needs many more points 
than are needed for reasonable accuracy with a second-order method. Another 
example occurs in meteorological flows over the globe. The accuracy of any algorithm 
is limited by uncertainties in the physics of the model and in observational data. 
However, one cannot choose too coarse a grid or the topography of the earth is 
distorted. Similar situations occur in other fields where the basic equations being 
integrated have only limited validity. However, for the majority of cases where the 
mesh is constructed mainly on accuracy considerations the use of higher-order 
methods can lead to large savings in time and storage. Furthermore, the implemen- 
tation of these methods frequently does not require large modifications to existing 
codes. 
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APPENDIX 

The use of rational approximations to give fourth-order accuracy can also be 
applied to explicit schemes. We consider two applications. With the leapfrog method 
the scheme is mildly implicit, while with the MacCormack method the resulting scheme 
is fully explicit. 

We consider 

Ut +“A = 0 

with the semidiscrete approximation 

uj”-1 = u;-l - 2Atfz , 

641) 

CA21 

To approximate the derivative we use the Pad6 approximation fz 'u (flu/($ -~ -$p))J 
where D,h = (h+l -A-,)/2fix and pf = (.fi+l + &r)/2. Clearing fractions we have 

This is an implicit equation for u 1L - l. However, the coefficients of the implicit portion 
are constant and so the L and U factors can be computed once and stored. Due to the 
sparseness of these matrices the operation count is not high and the accuracy is 
fourth order in space. The scheme is still only conditionally stable. 

With MacCormack’s method we have 

iij =: ujn - At f ;‘, 
(A3) 

UT’-1 = i&y + iijll - At f ;‘). 1 

We approximate f 2 (l) by a forward Pad6 approximation and f p’ by a backward Pad6 
approximation and clear the fractions. We then have 

31 Aiij+l + (1 - a) Aii, = - 2 (j+l - .fJ, (A4a) 

a Au;:; -+- (1 - a) Au;‘+l = 2d.u -At (fj -.f-J> (A4b) 

where Afij = ii j - uj and A$+l = u?“-l - -&(Ei + z.+‘“). This method is fourth order 
in space and second order in time if a = (31j2 - I)/(2 - 3112). The scheme only 
involves the points j - 1, and j + 1 and so no additional difficulties arise near the 
boundaries. We find ii: at the right boundary by some one-sided third-order differences 
and then solve (A4a) for Atij. We then find Au;+’ at the left boundary and solve 
(A4b) for AzP~. A linear stability analysis shows that the scheme is stable if 
(At/Ax),4 ,( 0.57, A = 8fl2u. 
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This scheme was tried on some of the test problems with the following scheme for 
the predictor at the right boundary 

(A5) 
and a similar formula for du:+l. In spite of the simplicity of the boundary treatment 
this method did not seem to offer any advantages over (2.8) and (2.9). For more 
complicated and less stable boundary conditions this situation may change. 
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